
June 13, 2007

Chris Schlaeger
TaskJuggler Developer

cs@taskjuggler.org

TaskJuggler Workshop

Version: 1.1
Date: 2006-06-13
© 2005, 2006, 2007 Chris Schlaeger
Licensed under the GNU Free Document License 1.2

© 2005, 2006, 2007 by Chris Schlaeger, Licensed under the GNU Free Document License 1.2

Workshop Agenda (Part I)

• What is TaskJuggler?
• Working with the User Interface
• A first Project Plan
• Generating a Report
• Defining Resources
• Defining Accounts
• Capturing the Work Breakdown Structure
• Using Shifts and Limits
• Using Task Priorities to control the Scheduling
• Working with Macros
• Generating Reports

© 2005, 2006, 2007 by Chris Schlaeger, Licensed under the GNU Free Document License 1.2

Workshop Agenda (Part II)

• Working with Include Files
• Creating Custom Templates
• Advanced Reports
• Collaborating with other Projects and Project

Managers
• Tracking the Project Status
• Documenting the Project Evolvement
• User defined Attributes
• Playing with multiple Scenarios

TaskJuggler Workshop (Part I)

© 2005, 2006, 2007 by Chris Schlaeger, Licensed under the GNU Free Document License 1.2

What is TaskJuggler?

• Project was founded in 2001 by a small team of
developers working for SUSE

• OpenSource project with internal and external
contributors

• Website: http://www.taskjuggler.org
• Until 2004 it was command line only
• New graphical user interface was released in March

2005
• Active user community from academia and industry
• Discussion forums are available on the website
• TaskJuggler is not a Gantt chart editor.
• It's a project planning and tracking tool.

http://www.taskjuggler.org/

© 2005, 2006, 2007 by Chris Schlaeger, Licensed under the GNU Free Document License 1.2

Working with the User Interface

Interactive Demonstration of the following features:
• Launching TaskJuggler from the menu
• Creating a new Project from a template file
• Access to the manual and the F2 keyword help
• Editor Settings
• Auto-completion and indentation
• Date insertion and modification with CTRL-D
• Scheduling a project
• Handling syntax and scheduling errors
• Explanation of the list browsers and the editor and report tabs
• Loading of an existing Project
• Browsing of various reports
• Demonstration of keyboard navigation to all GUI elements

© 2005, 2006, 2007 by Chris Schlaeger, Licensed under the GNU Free Document License 1.2

Basic Components of a Project

• Project Header
project myProject “My Project” “1.0”

 2005-11-01 - 2006-03-31

• Task Definitions
task prjstart “Project Start” {

 start 2005-11-05

}

task step1 “Step 1” {

 depends prjstart

 duration 2w

}

© 2005, 2006, 2007 by Chris Schlaeger, Licensed under the GNU Free Document License 1.2

Specifying a Task Duration

• Three methods of specifying a duration directly
• Calendar time: duration

• Working time: length

• Resource time: effort

• Must be used with a unit
min, h, d, w, m, y

• Examples:
• duration 1.5y (1.5 calendar years)

• length 2w (10 working days)

• effort 2w (10 resource days)

• Conversion factors: yearlyworkingdays,
dailyworkinghours

© 2005, 2006, 2007 by Chris Schlaeger, Licensed under the GNU Free Document License 1.2

Exercise No. 1

Task:
Create a project plan
consisting of 5 different
tasks.

Time: 10 minutes

Steps

• Create a project with the “Blank”
Template
• Enter 5 tasks with different task
durations
• 4 should happen in sequence
• 1 should happen simultaneously
with another task
• Schedule the project and make
sure there are no errors
• The summary report should
show a task count of 5

© 2005, 2006, 2007 by Chris Schlaeger, Licensed under the GNU Free Document License 1.2

Generating a Report

• Available Format Types
Interactive, HTML, CSV, XML, Export, iCalendar

• Available Content Types
Task Reports, Resource Reports, Account Reports, Calendar
Reports, Status Reports

• Definition of a Report
resourcereport “Resource List”

taskreport “Project Overview” {

 columns no, name, start, end, chart

}

© 2005, 2006, 2007 by Chris Schlaeger, Licensed under the GNU Free Document License 1.2

Using Flags to mark Objects

• Use flags to mark certain groups of tasks.
• Flags must be declared before they can be used.
• Flag names are TaskJuggler IDs. They must consist

only of letters, numbers and underscores.

flags important

task foo “Foo Task” {

 flags important

}

© 2005, 2006, 2007 by Chris Schlaeger, Licensed under the GNU Free Document License 1.2

Filtering of Report Content

• Content of reports can be limited to the exact amount
needed.

• Show only columns you are interested in
• Show only tasks you are interested in

hidetask important

• Show only resources you are interested in
hideresource ~team

• Sort content by up to 3 criteria
sorttasks tree, startup

sortresources nameup

© 2005, 2006, 2007 by Chris Schlaeger, Licensed under the GNU Free Document License 1.2

Getting Help

• The TaskJuggler Manual
• Available as PDF document

• On the web: http://www.taskjuggler.org/docs.php

• In the menu: Select Help->TaskJuggler Handbook or Press
F1

• Context sensitive keyword help:
Move the cursor in the editor over any TaskJuggler keyword and
press F2. You will get a detailed explanation of the keyword
including it's meaning, context and other related information.

http://www.taskjuggler.org/docs.php

© 2005, 2006, 2007 by Chris Schlaeger, Licensed under the GNU Free Document License 1.2

Structure of a TaskJuggler Project

• TaskJuggler processes files from top to bottom. So the
order of things inside the file matter. You cannot
reference properties, that haven't been defined yet.
The following order is a good guideline:
• Project Header

• Macro definitions

• Flag declarations

• Shift definitions

• Account definitions

• Resource definitions

• Task definitions

• Bookings

• Reports

© 2005, 2006, 2007 by Chris Schlaeger, Licensed under the GNU Free Document License 1.2

Exercise No. 2

Task:
Generate a report for
your first project.

Time: 5 minutes

Steps

• Look up the possible columns in
the TaskJuggler manual
• Be sure to include the start and
end date of tasks in the report
• Use flags to filter out 2 tasks
• Sort the remaining tasks by
name from last to first

© 2005, 2006, 2007 by Chris Schlaeger, Licensed under the GNU Free Document License 1.2

Defining Resources

• Resource definitions have similar format as task
definitions

• Many attributes get inherited from enclosing scope.
resource team “Developer Team” {

 rate 300 # daily cost

 resource john “John Doe”

 resource wilma “Wilma Flintstone”

 resource paul “Paul McCartney” {

 rate 250

 }

}

© 2005, 2006, 2007 by Chris Schlaeger, Licensed under the GNU Free Document License 1.2

Assigning Resources to Tasks

• Simple case: 1 task, 1 resource
task foo “Foo Task” {

 effort 5d

 allocate joe

}

• Allocating multiple resources
task foo “Foo Task” {

 effort 10w

 allocate wilma, paul, joe

}

© 2005, 2006, 2007 by Chris Schlaeger, Licensed under the GNU Free Document License 1.2

Assigning Resources to Tasks (Cntd.)

• Allocating a team
task foo “Foo Task” {

 effort 5d

 allocate team

}

• Mandatory allocations
task foo “Foo Task” {

 effort 10w

 allocate wilma

 allocate projector { mandatory }

}

© 2005, 2006, 2007 by Chris Schlaeger, Licensed under the GNU Free Document License 1.2

Assigning Resources to Tasks (Cntd.)

• Specifying alternative resources
task foo “Foo Task” {

 effort 5d

 allocate joe { alternative paul }

}

• Using the selection function
task foo “Foo Task” {

 effort 5d

 allocate wilma {

 alternative joe, paul

 select maxloaded

 }

}

© 2005, 2006, 2007 by Chris Schlaeger, Licensed under the GNU Free Document License 1.2

Assigning Resources to Tasks (Cntd.)

• Making sure that a resource does not change once it
has been selected
task foo “Foo Task” {

 effort 5d

 allocate wilma {

 alternative joe, paul

 persistent

 }

}

• Whichever resource is available first, does all of the
work.

© 2005, 2006, 2007 by Chris Schlaeger, Licensed under the GNU Free Document License 1.2

Resource Efficiency

• You can specify differences in the ability to do work by
using the efficiency attribute. Use with care as
this can lead to micromanagement!

• You can model an opaque team of 5 people
resource team “5 Guys” {

 efficiency 5.0

}

• You can model resources that don't do any work
resource projector “Projector” {

 efficiency 0.0

}

© 2005, 2006, 2007 by Chris Schlaeger, Licensed under the GNU Free Document License 1.2

Timing Resolution

• By default TaskJuggler uses 1 hour time slots.
• This can be changed using the timingresolution

keyword.
• All time values are always rounded to a timing

resolution boundary.
• Changing this value has a massive influence on

performance and memory consumption.

project myproject “My Project” “1.0”

 2005-11-04 - 2006-03-06 {

 timingresolution 10min

}

© 2005, 2006, 2007 by Chris Schlaeger, Licensed under the GNU Free Document License 1.2

Commenting your Project

• Comments allow you to put any additional information
about your project right into the project file.

• There are 2 types of comments:
• Single line comment: # Some wise words

• Multi-line comments:
/* A whole lot of

 * more wise

 * words */

• Comments can be used to temporarily disable certain
parts of the project file.

© 2005, 2006, 2007 by Chris Schlaeger, Licensed under the GNU Free Document License 1.2

Exercise No. 3

Task:
Plan 2 meetings for 2
different teams each so
TaskJuggler prevents
conference room conflicts.

Time: 10 minutes

Steps

• Define 2 teams with at least 3
members each
• Define 2 conference rooms
• Define the meeting tasks each
lasting 2.5 hours
• Allocate the teams and meeting
rooms appropriately.

Short Break
Please be ready to continue in 5 Minutes!

© 2005, 2006, 2007 by Chris Schlaeger, Licensed under the GNU Free Document License 1.2

Name Spaces

• TaskJuggler properties like Tasks, Accounts and
Resources have separate name spaces.

• It's ok to have a task and a resource with ID foo.
• The Task name space is hierarchical. All other name

spaces are flat.
• There can be a task foo.foo, but not a resource.

task foo “Foo” {

 task foo “Foo” // This is ok!

}

resource foo “Foo” {

 resource foo “Foo” // This is an error!

}

© 2005, 2006, 2007 by Chris Schlaeger, Licensed under the GNU Free Document License 1.2

Defining Accounts

• Format for Account definitions

account acc1 “Cost Accounts” cost {

 account salaries “Salary cost”

 account material “Material cost”

}

account acc2 “Revenue Accounts” revenue {

 account payments “Customer Payments”

}

© 2005, 2006, 2007 by Chris Schlaeger, Licensed under the GNU Free Document License 1.2

Crediting Costs to Accounts

• Cost Type 1: Running costs
task job “A Job” {

 effort 2w

 allocate joe

 account salaries

}

• Cost Type 2: Start or End payments
task payment “Customer Payment” {

 start 2005-12-24

 milestone

 startcredit 50000

 account payments

}

© 2005, 2006, 2007 by Chris Schlaeger, Licensed under the GNU Free Document License 1.2

Accounting Reports

• Currency unit must be defined in the project header
project myProjectId "My Project" "1.0"

 2005-11-02 - 2005-12-31 {

 currency "$"

 currencyformat "(" ")" "," "." 2

}

• Accounting Reports are currently available in HTML or
CSV
htmlaccountreport “Project-Cash-Flow.html” {

 columns no, name, total, monthly

 accumulate

}

© 2005, 2006, 2007 by Chris Schlaeger, Licensed under the GNU Free Document License 1.2

Exercise No. 4

Task:
Calculate the P&L for a 3 year
project taking development
costs and expected customer
payments into account.

Time: 15 minutes

Steps

• Define the project outline with 4
consecutive tasks.
• Define an opaque team of 5
people and assign them to all
tasks
• Define 3 customer payments as
milestones.
• Define cost and revenue
accounts.
• Create an accounting report that
shows your cash flow.

© 2005, 2006, 2007 by Chris Schlaeger, Licensed under the GNU Free Document License 1.2

Milestones

• Tasks that don't have any kind of duration specification
are called milestone.

• You can mark a task to be a milestone, but it still must
not have any duration specification.

task foo “Foo Task” {

 start 2005-11-04

}

task foo “Foo Task” {

 start 2005-11-04

 milestone

}

© 2005, 2006, 2007 by Chris Schlaeger, Licensed under the GNU Free Document License 1.2

Capturing the Work Breakdown
Structure

• Start with a project outline
task project “My Project” {

 start 2005-11-01

 task plan “Planning Phase” {

 task prd “Write PRD” {

 duration 2w

 }

 }

 task dev “Development Phase”

 task qa “Testing Phase”

 task rel “Release Phase”

 task maint “Maintenance Phase”

}

• Then add details as you learn them.

© 2005, 2006, 2007 by Chris Schlaeger, Licensed under the GNU Free Document License 1.2

Specifying Task Dependencies

• Task B depends on Task A
task a “Task A” { start 2005-11-01 }

task b “Task B” { depends a }

• Task A precedes Task B
task a “Task A” { precedes b }

task b “Task B” { start 2005-11-01 }

• Relative and absolute Dependency Specifications
task p “Project” {

 task a “Task A” { start 2005-11-01 }

 task b “Task B” { depends !a }

 task c “Task C” { depends p.b }

}

© 2005, 2006, 2007 by Chris Schlaeger, Licensed under the GNU Free Document License 1.2

Scheduling Direction

• Attributes that cause ASAP scheduling:
• start, depends

• Attributes that cause ALAP scheduling:
• end, precedes

• Explicit specification of the scheduling mode:
• scheduling asap

• scheduling alap

• The last implicit or explicit specification rules

 Avoid mixing ASAP and ALAP tasks in the
same project! Either plan everything from start
to end or vice versa.

© 2005, 2006, 2007 by Chris Schlaeger, Licensed under the GNU Free Document License 1.2

Logical Expressions for Filters

• Logical Filter expressions consist of flags, functions
and operators

• Supported operators (subset):
& (and), | (or), ~ (not), > (larger), < (smaller)

• Expressions can be grouped with parentheses
• Many query functions supported

e.g. isChildOf(ID), isMilestone(), treeLevel()

• Example:
taskreport “Task Overview (Important ones)” {

 rolluptask (treelevel() > 1) & ~important

}

© 2005, 2006, 2007 by Chris Schlaeger, Licensed under the GNU Free Document License 1.2

Exercise No. 5

Task:
Create a release plan for
a software project that
outlines the project
phases. Generate a
report with only the
important milestones.

Time: 15 minutes

Steps

• All tasks should be relative to a
start milestone
• Start with an outline of the
phases
• Add more detailed tasks
• Mark important milestones
• Generate the report
• Then change the start date and
watch the impact on the report.

Short Break
Please be ready to continue in 5 Minutes!

© 2005, 2006, 2007 by Chris Schlaeger, Licensed under the GNU Free Document License 1.2

Defining Working Hours

• Global definition in the Project Header
project myprj “My Project” “1.0” 2005-11-01 -
2006-04-01 {

 workinghours {

 mon 8:00 – 12:00, 13:00 – 17:00

 tue 8:00 – 12:00, 13:00 – 17:00

 wed 8:00 – 12:00, 13:00 – 17:00

 thu 8:00 – 12:00, 13:00 – 17:00

 fri 8:00 – 12:00, 13:00 – 17:00

 sat off

 sun off

 }

}

© 2005, 2006, 2007 by Chris Schlaeger, Licensed under the GNU Free Document License 1.2

Defining Working Hours (Cntd.)

• Different working hours for some resources
resource team “Team” {

 workinghours {

 mon off

 fri 8:00 – 12:00

 }

 resource john “John Doe” {

 workinghours {

 mon 13:00 – 17:00

 }

 }

 resource wilma “Wilma Flintstone”

}

© 2005, 2006, 2007 by Chris Schlaeger, Licensed under the GNU Free Document License 1.2

Defining Shifts

• Shifts are defined sets of working hours per week
shift fullTime “Full Time Shift” {

 workinghours mon 8:00 – 12:00, 13:00 – 17:00

 workinghours tue 8:00 – 12:00, 13:00 – 17:00

 workinghours wed 8:00 – 12:00, 13:00 – 17:00

 workinghours thu 8:00 – 12:00, 13:00 – 17:00

 workinghours fri 8:00 – 12:00, 13:00 – 17:00

 workinghours sat off

 workinghours sun off

 shift partTime “Part Time Shift” {

 workinghours mon off

 workinghours wed off

 }

}

© 2005, 2006, 2007 by Chris Schlaeger, Licensed under the GNU Free Document License 1.2

Using Shifts

• Shifts are used to modify standard working hours
during specified intervals
resource wilma “Wilma Flintstone” {

 shift partTime 2005-12-01 – 2006-01-01

}

• Shifts can be used to limit resource allocations to a
task during certain intervals
task foo “Foo Task” {

 effort 2w

 allocate john

 shift partTime 2005-12-01 – 2006-01-01

}

© 2005, 2006, 2007 by Chris Schlaeger, Licensed under the GNU Free Document License 1.2

Limiting Resource Usage per Interval

• Limits can be used to limit the usage of a resource or
an allocation of resources to a task to a certain
maximum per interval. Supported intervals are day,
week or month.
resource john "John Doe" {

 limits { dailymax 2h weeklymax 6h }

}

task foo "Foo Task" {

 duration 60d

 allocate r2 {

 limits { weeklymax 3d monthlymax 2w }

 }

}

© 2005, 2006, 2007 by Chris Schlaeger, Licensed under the GNU Free Document License 1.2

Using Task Priorities to control the
Scheduling

• The priority attribute controls the probability that a
tasks gets the allocated resources

• The default priority is 500
task secUpds “Security Updates” {

 duration 2m

 allocate paul

 limits { dailymax 1h }

 priority 700

}

task calls “Handle customer calls” {

 duration 2m

 allocate paul

 priority 300

}

© 2005, 2006, 2007 by Chris Schlaeger, Licensed under the GNU Free Document License 1.2

Exercise No. 6

Task:
Create a shift plan for the
next 4 weeks for a team
of system administrators.

Time: 15 minutes

Steps

• Define the various tasks of the
system administration group
• Define your team
• Prioritize the tasks and allocate
the resources
• Generate a shift plan for one of
the team members that only list
his or her tasks
• Generate an overview plan that
shows all assignments

End of TaskJuggler Workshop (Part I)

TaskJuggler Workshop (Part II)

© 2005, 2006, 2007 by Chris Schlaeger, Licensed under the GNU Free Document License 1.2

Workshop Agenda (Part II)

• Working with Include Files
• Creating Custom Templates
• Advanced Reports
• Collaborating with other Projects and Project

Managers
• Tracking the Project Status
• Documenting the Project Evolvement
• User defined Attributes
• Playing with multiple Scenarios

© 2005, 2006, 2007 by Chris Schlaeger, Licensed under the GNU Free Document License 1.2

Working with Macros

• Macros are somewhat flexible text fragments that can
be inserted multiple times once they have been
defined.

• Macro names must have at least one uppercase letter
• Definition of a Macro

macro allocateGrp [allocate john, wilma]

• Using a defined Macro
task foo “Foo Task” {

 effort 20d

 ${allocateGrp}

}

© 2005, 2006, 2007 by Chris Schlaeger, Licensed under the GNU Free Document License 1.2

Working with Macros (Cntd.)

• Parts of macros can be replaced during insertion time
by using parameters.

• Definition of a Macro with parameters
macro defTask [task ${1} “${1} Task”]

• Calling a Macro with parameters
${defTask “foo”}

${defTask “bar”}

• Result of the expanded Macros
task foo “foo Task”

task bar “bar Task”

© 2005, 2006, 2007 by Chris Schlaeger, Licensed under the GNU Free Document License 1.2

Creating Custom Templates

• TaskJuggler comes with several custom templates but
the you can add your own templates as well

• Custom templates need to be put into
${HOME}/.kde/share/apps/taskjuggler/templates/en_US

• The project start and end date can be automatically
set to the current date (and current date + 180 days)
when using @@projectstart@@ and
@@projectend@@ instead of the dates in the
templates.

© 2005, 2006, 2007 by Chris Schlaeger, Licensed under the GNU Free Document License 1.2

Working with include Files

• To include another file into your project file, put an
include statement into your project:
include “sometasks.tji”

• Project files must have a .tjp extension, include files
must have a .tji extension.

• Tasks in the include file can be included as sub-tasks
of some other task.
include “sometasks.tji” { taskprefix foo }

• Include statements may only be used in the project
header or outside of all property definitions.

• supplement keyword can be used to add attributes
to already defined properties

© 2005, 2006, 2007 by Chris Schlaeger, Licensed under the GNU Free Document License 1.2

Exercise No. 7

Task:
Take the release plan
project and break it into
several files.

Time: 15 minutes

Steps

• Create an include file for the
resource definitions divided into
2 teams
• Add some sub tasks of one tasks
into 2 additional include files
• Allocate some resources so that
one team is allocated in each of
the include files
• Learn how to navigate the project
with the browsers

© 2005, 2006, 2007 by Chris Schlaeger, Licensed under the GNU Free Document License 1.2

Advanced Reports

• Good reports show exactly the amount of information
you want to show. Nothing more and nothing less.

• TaskJuggler supports many filter mechanism to limit
the reports to the right amount of data
• Show only the columns that matter

• hidetask, hideresource, hideaccount

• rolluptask, rollupresource, rollupaccount

• limit the report interval with start and end dates

• values are reported in the right format and unit:
– loadunit, timeformat, shorttimeformat,
barlabels, showprojectids

• In tree-mode sorting parents are always included, no
matter what the filters say. Use a different sorting
mode to avoid this if undesired.

© 2005, 2006, 2007 by Chris Schlaeger, Licensed under the GNU Free Document License 1.2

Advanced Reports (Cntd.)

• The default scenario ID needed for some query
functions is plan

• In tree-mode sorting parents are always included, no
matter what the filters say. Use a different sorting
mode to avoid this if undesired.

© 2005, 2006, 2007 by Chris Schlaeger, Licensed under the GNU Free Document License 1.2

Excluding details from reports

• Limiting the report period
taskreport “Task List” {

 period 2001-12-01 +2w

}

• Excluding tasks or resources
hidetask <LOGICAL EXPRESSION>

rolluptask <LOGICAL EXPRESSION>

hideresoruce <LOGICAL EXPRESSION>

rollupresource <LOGICAL EXPRESSION>

© 2005, 2006, 2007 by Chris Schlaeger, Licensed under the GNU Free Document License 1.2

Customizing Column Headers and
Cells

• The default column title can be replaced
taskreport “Task List” {

 columns no, name, effort { title “Work” }

}

• In HTML reports links can be added to headers and
table cells
htmltaskreport "LinkURL.html" {

 columns hierarchindex, name,

 monthly { subtitleurl "Monthly-Detail-
$${month}.html" }

}

htmltaskreport "LeafEfforts.html" {

 columns hierarchindex, name,

 effort { hidecelltext ~isLeaf() }

}

© 2005, 2006, 2007 by Chris Schlaeger, Licensed under the GNU Free Document License 1.2

Adding Information to Reports

• Adding a Headline
taskreport “Task List” {

 headline “The tasks of my project”

}

• Adding a Caption
htmlresourcereport “Resources.html” {

 caption “List of all the hard working men and
women on the project.”

}

• Adding a copyright (must be done in the header)
project myPrj “My Project” “1.0” 2005-11-01 -

 2006-04-01 {

 copyright “2005 Big Business, Inc.”

}

© 2005, 2006, 2007 by Chris Schlaeger, Licensed under the GNU Free Document License 1.2

Advanced HTML Reports

HTML Reports can be customized by adding an inline
stylesheet, and HTML fragments at the top and bottom
of the report.

rawhead

 '<table align="center" border="2" cellpadding="10"

 style="background-color:#f3ebae; font-size:105%">

 <tr>

 <td>Tasks Overview</td>

 <td>Staff Overview</td>

 <td>Accounting</td>

 <td>Calendar</td>

 </tr>

 </table>

'

© 2005, 2006, 2007 by Chris Schlaeger, Licensed under the GNU Free Document License 1.2

CSV (Colon Separated Values) Report

• CSV is a simple text-form exchange format to export
data to office suites like OpenOffice.org

• CSV reports are available in 3 types
• csvtaskreport

• csvresourcereport

• csvaccountreport

• Right click on a CSV report in the report browser and
select “Generate Report”

• Then the resulting report file can be loaded with
OpenOffice.org. Use “comma” as a separator.

• Set the mime-type definition of text/x-csv to
OpenOffice.org to automatically lauch OOo from the
report browser

© 2005, 2006, 2007 by Chris Schlaeger, Licensed under the GNU Free Document License 1.2

Exercise No. 8

Task:
Generate several
different reports for your
project.

Time: 10 minutes

Steps

• Generate an HTML task report
that only contains tasks allocated
to team 1
• Generate a CSV report with all
tasks and efforts and import it
into OpenOffice.org

Short Break
Please be ready to continue in 5 Minutes!

© 2005, 2006, 2007 by Chris Schlaeger, Licensed under the GNU Free Document License 1.2

Tracking the Project Status

• TaskJuggler is helping you a lot when tracking your
project status. If no other information is provided, it
assumes that all tasks have progressed as planned.

• Simple way to provide status information
task foo “Foo Task” {

 effort 2w allocate john

 complete 75

}

• Detailed way to provide status information
supplement resource john {

 booking 2003-06-08 2003-06-09 t1 { sloppy 2 }

 booking 2003-06-11 2003-06-12 t1 { sloppy 2 }

}

© 2005, 2006, 2007 by Chris Schlaeger, Licensed under the GNU Free Document License 1.2

Generating Export Files

• TaskJuggler can export a scheduled project in the
same text format that the unscheduled project was
provided in.

• The amount of information that is exported can be
controlled by the properties attribute.

• E.g. export only the resource bookings for a certain
week:
export "Week1Bookings.tji" {

 properties bookings

 start 2000-01-01

 end 2000-01-08

}

© 2005, 2006, 2007 by Chris Schlaeger, Licensed under the GNU Free Document License 1.2

Scheduling in Projection Mode

• The bookings up to the current date may vary from the
original plan.

• TaskJuggler can then schedule a new plan based on
the amount of work that has happened already.

• The “current” date is user configurable.

project prj "Project" "1.0" 2003-06-05 -

 2003-07-05 {

 now 2003-06-15

 scenario plan "Plan" {

 projection

 }

}

© 2005, 2006, 2007 by Chris Schlaeger, Licensed under the GNU Free Document License 1.2

Generating Status Reports

• Status reports are only available in HTML format
• Status reports include the following items

• Tasks that should have been finished already

• Work in progress

• Tasks that have been completed

• Upcoming new tasks

htmlstatusreport “StatusReport-Week45.html”

© 2005, 2006, 2007 by Chris Schlaeger, Licensed under the GNU Free Document License 1.2

Exercise No. 9

Task:
Generate a status report
report for the project 4
weeks after the start.

Time: 15 minutes

Steps

• Export bookings for the first 4
allocated weeks
• Remove or modify some
bookings and include the export
file in your project file
• Generate a status report for the
week 4 weeks after the first work
started
• Generate a new project plan
based on the currently completed
work

© 2005, 2006, 2007 by Chris Schlaeger, Licensed under the GNU Free Document License 1.2

Working with multiple Project Plans

Export reports can be standalone project files or
includeable sub-projects depending on the filename
extension used in the report definition.

export "SubProject.tji" {

 taskattributes all

 hideresource 0

}

export "FullProject.tjp" {

 taskattributes all

 hideresource 1

}

© 2005, 2006, 2007 by Chris Schlaeger, Licensed under the GNU Free Document License 1.2

Different Export Files

• *.tjp Export files have a project header
• *.tji Export files have no project header
• The other content can be controlled by properties

and the usual filter mechanisms
• The following properties are supported:

all, bookings, shifts, tasks, resources

© 2005, 2006, 2007 by Chris Schlaeger, Licensed under the GNU Free Document License 1.2

Dealing with multiple Project IDs

• All tasks of sub-projects keep their original project ID
• To include a sub-project, the project ID needs to be

declared first

projectids myproject1, myproject2

• Export reports (*.tji) already contain this declaration

© 2005, 2006, 2007 by Chris Schlaeger, Licensed under the GNU Free Document License 1.2

Exporting a sub-Project

• Parts of a project can be turned into a standalone
Project file.

• Use taskroot to identify the sub-tree you want to
export. All sub tasks of the root task will be exported.
export “SubProject.tjp” {

 taskroot myproject.jimsWork

 taskattributes all

 hideresource 0

}

• Use hidetask to export only certain sub-tasks of the
root task
hidetask ~isChildOf(myproject.jimsWork.foo)

© 2005, 2006, 2007 by Chris Schlaeger, Licensed under the GNU Free Document License 1.2

Exercise No. 10

Task:
Combine 2 independent
project into a summary
project.

Time: 15 minutes

Steps

• Turn the 2 task files into
independent projects
• Export the scheduled projects
• Include them into a summary
project
• Generate a summary report

Short Break
Please be ready to continue in 5 Minutes!

© 2005, 2006, 2007 by Chris Schlaeger, Licensed under the GNU Free Document License 1.2

Documenting the Project Evolvement

• Adding notes to tasks
task foo “Foo Task” {

 note “This might be difficult.”

}

• Adding status notes to tasks
task foo “Foo Task” {

 statusnote “We have unexpected problems.”

}

• Keeping a Journal of events
task foo “Foo Task” {

 journalentry 2005-10-20 “We ran into problems.”

 journalentry 2005-10-21 “Informed customer.”

 journalentry 2005-10-25 “Problem solved.”

}

© 2005, 2006, 2007 by Chris Schlaeger, Licensed under the GNU Free Document License 1.2

User Defined Attributes

• The attribute set of tasks, resources and accounts can
be extended by the user.

• There are two types of attributes available
Strings and URLs

• User defined attributes do not impact the scheduling.
They are for documentation and reporting purposes
only.

• They can be used in all reports like the build-in
attributes.

• User Defined attribute IDs must start with a capital
letter

© 2005, 2006, 2007 by Chris Schlaeger, Licensed under the GNU Free Document License 1.2

User Define Attributes (Cntd.)

project ca "Custom Attributes" "1.0" 2003-05-28 -

 2003-06-28 {

 extend task {

 reference MyLink "My Link"

 text MyText "My Text"

 }

}

task t "Task" {

 start 2003-05-28

 MyLink "http://www.taskjuggler.org" { label "TJ Web"
}

 MyText "TaskJuggler is great!"

}

© 2005, 2006, 2007 by Chris Schlaeger, Licensed under the GNU Free Document License 1.2

Playing with multiple Scenarios

project prj "Example" "1.0" 2005-05-29 - 2005-07-01 {

 scenario plan "Planned Scenario" {

 scenario actual "Actual Scenario"

 scenario test "Test Scenario" {

 disabled

 }

 }

}

task t "Task" {

 start 2005-05-29

 actual:start 2005-06-03

 test:start 2005-06-07

}

© 2005, 2006, 2007 by Chris Schlaeger, Licensed under the GNU Free Document License 1.2

Exercise No. 11

Task:
Add another slightly
different scenario to the
project plan from
Exercise 7.

Time: 15 minutes

Steps

• Create an additional scenario
definition
• Look in the manual for scenario
specific values
• Add a few changes for the 2nd
scenario
• Add an email attribute to your
resources
• Generate an HTML task report
that compares both scenarios
• Generate a list with all resources
including their email address

The End
Thanks for attending!

A copy of the slides is available from the
TaskJuggler web site at http://www.taskjuggler.org/

http://www.taskjuggler.org/

June 13, 2007

© 2005 Chris Schlaeger

Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.2
published by the Free Software Foundation; with no Invariant Sections,
no Front-Cover Texts and no Back-Cover Texts. A copy of the license is
available at http://www.fsf.org/licensing/licenses/fdl.txt.

http://www.fsf.org/licensing/licenses/fdl.txt

