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Workshop Agenda (Part I)

• What is TaskJuggler?
• Working with the User Interface
• A first Project Plan
• Generating a Report
• Defining Resources
• Defining Accounts
• Capturing the Work Breakdown Structure
• Using Shifts and Limits
• Using Task Priorities to control the Scheduling
• Working with Macros
• Generating Reports
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Workshop Agenda (Part II)

• Working with Include Files
• Creating Custom Templates
• Advanced Reports
• Collaborating with other Projects and Project 

Managers
• Tracking the Project Status
• Documenting the Project Evolvement
• User defined Attributes
• Playing with multiple Scenarios



TaskJuggler Workshop (Part I)
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What is TaskJuggler?

• Project was founded in 2001 by a small team of 
developers working for SUSE

• OpenSource project with internal and external  
contributors

• Website: http://www.taskjuggler.org
• Until 2004 it was command line only
• New graphical user interface was released in March 

2005
• Active user community from academia and industry
• Discussion forums are available on the website
• TaskJuggler is not a Gantt chart editor.
• It's a project planning and tracking tool.

http://www.taskjuggler.org/
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Working with the User Interface

Interactive Demonstration of the following features:
• Launching TaskJuggler from the menu
• Creating a new Project from a template file
• Access to the manual and the F2 keyword help
• Editor Settings
• Auto-completion and indentation
• Date insertion and modification with CTRL-D
• Scheduling a project
• Handling syntax and scheduling errors
• Explanation of the list browsers and the editor and report tabs
• Loading of an existing Project
• Browsing of various reports
• Demonstration of keyboard navigation to all GUI elements
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Basic Components of a Project

• Project Header
project myProject “My Project” “1.0”

        2005-11-01 - 2006-03-31

• Task Definitions
task prjstart “Project Start” {

  start 2005-11-05

}

task step1 “Step 1” {

  depends prjstart

  duration 2w

}
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Specifying a Task Duration

• Three methods of specifying a duration directly
• Calendar time: duration

• Working time: length

• Resource time: effort

• Must be used with a unit
min, h, d, w, m, y

• Examples:
• duration 1.5y (1.5 calendar years)

• length 2w (10 working days)

• effort 2w (10 resource days)

• Conversion factors: yearlyworkingdays, 
dailyworkinghours
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Exercise No. 1

Task:
Create a project plan 
consisting of 5 different 
tasks.

Time: 10 minutes 

Steps

• Create a project with the “Blank” 
Template
• Enter 5 tasks with different task 
durations
• 4 should happen in sequence
• 1 should happen simultaneously 
with another task
• Schedule the project and make 
sure there are no errors
• The summary report should 
show a task count of 5
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Generating a Report

•  Available Format Types
Interactive, HTML, CSV, XML, Export, iCalendar

•  Available Content Types
Task Reports, Resource Reports, Account Reports, Calendar 
Reports, Status Reports

•  Definition of a Report
resourcereport “Resource List”

taskreport “Project Overview” {

  columns no, name, start, end, chart

}
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Using Flags to mark Objects

• Use flags to mark certain groups of tasks.
• Flags must be declared before they can be used.
• Flag names are TaskJuggler IDs. They must consist 

only of letters, numbers and underscores.

flags important

task foo “Foo Task” {

  flags important

}
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Filtering of Report Content

• Content of reports can be limited to the exact amount 
needed.

• Show only columns you are interested in
• Show only tasks you are interested in

hidetask important

• Show only resources you are interested in
hideresource ~team

• Sort content by up to 3 criteria
sorttasks tree, startup

sortresources nameup



© 2005, 2006, 2007 by Chris Schlaeger, Licensed under the GNU Free Document License 1.2

  

Getting Help

• The TaskJuggler Manual
• Available as PDF document

• On the web: http://www.taskjuggler.org/docs.php

• In the menu: Select Help->TaskJuggler Handbook or Press 
F1

• Context sensitive keyword help:
Move the cursor in the editor over any TaskJuggler keyword and 
press F2. You will get a detailed explanation of the keyword 
including it's meaning, context and other related information.

http://www.taskjuggler.org/docs.php
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Structure of a TaskJuggler Project

• TaskJuggler processes files from top to bottom. So the 
order of things inside the file matter. You cannot 
reference properties, that haven't been defined yet. 
The following order is a good guideline:
• Project Header

• Macro definitions

• Flag declarations

• Shift definitions

• Account definitions

• Resource definitions

• Task definitions

• Bookings

• Reports
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Exercise No. 2

Task:
Generate a report for 
your first project.

Time: 5 minutes

Steps

• Look up the possible columns in 
the TaskJuggler manual
• Be sure to include the start and 
end date of tasks in the report
• Use flags to filter out 2 tasks
• Sort the remaining tasks by 
name from last to first
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Defining Resources

• Resource definitions have similar format as task 
definitions

• Many attributes get inherited from enclosing scope.
resource team “Developer Team” {

  rate 300 # daily cost

  resource john “John Doe”

  resource wilma “Wilma Flintstone”

  resource paul “Paul McCartney” {

    rate 250

  }

}
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Assigning Resources to Tasks

• Simple case: 1 task, 1 resource
task foo “Foo Task” {

  effort 5d

  allocate joe

}

• Allocating multiple resources
task foo “Foo Task” {

  effort 10w

  allocate wilma, paul, joe

}
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Assigning Resources to Tasks (Cntd.)

• Allocating a team
task foo “Foo Task” {

  effort 5d

  allocate team

}

• Mandatory allocations
task foo “Foo Task” {

  effort 10w

  allocate wilma

  allocate projector { mandatory }

}
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Assigning Resources to Tasks (Cntd.)

• Specifying alternative resources
task foo “Foo Task” {

  effort 5d

  allocate joe { alternative paul }

}

• Using the selection function
task foo “Foo Task” {

  effort 5d

  allocate wilma {

    alternative joe, paul

    select maxloaded

  }

}
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Assigning Resources to Tasks (Cntd.)

• Making sure that a resource does not change once it 
has been selected
task foo “Foo Task” {

  effort 5d

  allocate wilma {

    alternative joe, paul

    persistent

  }

}

• Whichever resource is available first, does all of the 
work.
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Resource Efficiency

• You can specify differences in the ability to do work by 
using the efficiency attribute. Use with care as 
this can lead to micromanagement!

• You can model an opaque team of 5 people
resource team “5 Guys” {

  efficiency 5.0

}

• You can model resources that don't do any work
resource projector “Projector” {

  efficiency 0.0

}
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Timing Resolution

• By default TaskJuggler uses 1 hour time slots.
• This can be changed using the timingresolution 

keyword.
• All time values are always rounded to a timing 

resolution boundary.
• Changing this value has a massive influence on 

performance and memory consumption.

project myproject “My Project” “1.0” 

        2005-11-04 - 2006-03-06 {

  timingresolution 10min

}
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Commenting your Project

• Comments allow you to put any additional information 
about your project right into the project file.

• There are 2 types of comments:
• Single line comment: # Some wise words

• Multi-line comments: 
/* A whole lot of

 * more wise

 * words */

• Comments can be used to temporarily disable certain 
parts of the project file.
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Exercise No. 3

Task:
Plan 2 meetings for 2 
different teams each so 
TaskJuggler prevents 
conference room conflicts.

Time: 10 minutes

Steps

• Define 2 teams with at least 3 
members each
• Define 2 conference rooms
• Define the meeting tasks each 
lasting 2.5 hours
• Allocate the teams and meeting 
rooms appropriately.



Short Break
Please be ready to continue in 5 Minutes!
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Name Spaces

• TaskJuggler properties like Tasks, Accounts and 
Resources have separate name spaces.

• It's ok to have a task and a resource with ID foo.
• The Task name space is hierarchical. All other name 

spaces are flat.
• There can be a task foo.foo, but not a resource.

task foo “Foo” {

  task foo “Foo”    // This is ok!

}

resource foo “Foo” {

  resource foo “Foo” // This is an error!

}
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Defining Accounts

• Format for Account definitions

account acc1 “Cost Accounts” cost {

  account salaries “Salary cost”

  account material “Material cost”

}

account acc2 “Revenue Accounts” revenue {

  account payments “Customer Payments”

}
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Crediting Costs to Accounts

• Cost Type 1: Running costs
task job “A Job” {

  effort 2w

  allocate joe

  account salaries

}

• Cost Type 2: Start or End payments
task payment “Customer Payment” {

  start 2005-12-24

  milestone

  startcredit 50000

  account payments

}
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Accounting Reports

• Currency unit must be defined in the project header
project myProjectId "My Project" "1.0" 

     2005-11-02 - 2005-12-31 {

  currency "$"

  currencyformat "(" ")" "," "." 2

}

• Accounting Reports are currently available in HTML or 
CSV
htmlaccountreport “Project-Cash-Flow.html” {

  columns no, name, total, monthly

  accumulate

}
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Exercise No. 4

Task:
Calculate the P&L for a 3 year 
project taking development 
costs and expected customer 
payments into account.

Time: 15 minutes

Steps

• Define the project outline with 4 
consecutive tasks.
• Define an opaque team of 5 
people and assign them to all 
tasks
• Define 3 customer payments as 
milestones.
• Define cost and revenue 
accounts.
• Create an accounting report that 
shows your cash flow.
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Milestones

• Tasks that don't have any kind of duration specification 
are called milestone.

• You can mark a task to be a milestone, but it still must 
not have any duration specification.

task foo “Foo Task” {

  start 2005-11-04

}

task foo “Foo Task” {

  start 2005-11-04

  milestone

}
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Capturing the Work Breakdown 
Structure

• Start with a project outline
task project “My Project” {

  start 2005-11-01

  task plan “Planning Phase” {

    task prd “Write PRD” {

      duration 2w

    }

  }

  task dev “Development Phase”

  task qa “Testing Phase”

  task rel “Release Phase”

  task maint “Maintenance Phase”

}

• Then add details as you learn them.
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Specifying Task Dependencies

• Task B depends on Task A
task a “Task A” { start 2005-11-01 }

task b “Task B” { depends a }

• Task A precedes Task B
task a “Task A” { precedes b }

task b “Task B” { start 2005-11-01 }

• Relative and absolute Dependency Specifications
task p “Project” {

  task a “Task A” { start 2005-11-01 }

  task b “Task B” { depends !a }

  task c “Task C” { depends p.b }

}
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Scheduling Direction

• Attributes that cause ASAP scheduling:
• start, depends

• Attributes that cause ALAP scheduling:
• end, precedes

• Explicit specification of the scheduling mode:
• scheduling asap

• scheduling alap

• The last implicit or explicit specification rules

    Avoid mixing ASAP and ALAP tasks in the 
same  project! Either plan everything from start 
to end or vice versa.
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Logical Expressions for Filters

• Logical Filter expressions consist of flags, functions 
and operators

• Supported operators (subset):
& (and), | (or), ~ (not), > (larger), < (smaller)

• Expressions can be grouped with parentheses
• Many query functions supported

e.g. isChildOf(ID), isMilestone(), treeLevel()

• Example:
taskreport “Task Overview (Important ones)” {

  rolluptask (treelevel() > 1) & ~important

}
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Exercise No. 5

Task:
Create a release plan for 
a software project that 
outlines the project 
phases. Generate a 
report with only the 
important milestones.

Time: 15 minutes

Steps

• All tasks should be relative to a 
start milestone
• Start with an outline of the 
phases
• Add more detailed tasks
• Mark important milestones
• Generate the report
• Then change the start date and 
watch the impact on the report.



Short Break
Please be ready to continue in 5 Minutes!
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Defining Working Hours

• Global definition in the Project Header
project myprj “My Project” “1.0” 2005-11-01 - 
2006-04-01 {

  workinghours {

    mon 8:00 – 12:00, 13:00 – 17:00

    tue 8:00 – 12:00, 13:00 – 17:00

    wed 8:00 – 12:00, 13:00 – 17:00

    thu 8:00 – 12:00, 13:00 – 17:00

    fri 8:00 – 12:00, 13:00 – 17:00

    sat off

    sun off

  }

}
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Defining Working Hours (Cntd.)

• Different working hours for some resources
resource team “Team” {

  workinghours {

    mon off

    fri 8:00 – 12:00

  }

  resource john “John Doe” {

    workinghours {

      mon 13:00 – 17:00

    }

  }

  resource wilma “Wilma Flintstone”

}
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Defining Shifts

• Shifts are defined sets of working hours per week
shift fullTime “Full Time Shift” {

  workinghours mon 8:00 – 12:00, 13:00 – 17:00

  workinghours tue 8:00 – 12:00, 13:00 – 17:00

  workinghours wed 8:00 – 12:00, 13:00 – 17:00

  workinghours thu 8:00 – 12:00, 13:00 – 17:00

  workinghours fri 8:00 – 12:00, 13:00 – 17:00

  workinghours sat off

  workinghours sun off

  shift partTime “Part Time Shift” {

    workinghours mon off

    workinghours wed off

  }

}
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Using Shifts

• Shifts are used to modify standard working hours 
during specified intervals
resource wilma “Wilma Flintstone” {

  shift partTime 2005-12-01 – 2006-01-01

}

• Shifts can be used to limit resource allocations to a 
task during certain intervals
task foo “Foo Task” {

  effort 2w

  allocate john

  shift partTime 2005-12-01 – 2006-01-01

}
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Limiting Resource Usage per Interval

• Limits can be used to limit the usage of a resource or 
an allocation of resources to a task to a certain 
maximum per interval. Supported intervals are day, 
week or month.
resource john "John Doe" { 

  limits { dailymax 2h weeklymax 6h }

}

task foo "Foo Task" {

  duration 60d

  allocate r2 {

    limits { weeklymax 3d monthlymax 2w }

  }

}
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Using Task Priorities to control the 
Scheduling

• The priority attribute controls the probability that a 
tasks gets the allocated resources

• The default priority is 500
task secUpds “Security Updates” {

  duration 2m

  allocate paul

  limits { dailymax 1h }

  priority 700

}

task calls “Handle customer calls” {

  duration 2m

  allocate paul

  priority 300

}
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Exercise No. 6

Task:
Create a shift plan for the 
next 4 weeks for a team 
of system administrators.

Time: 15 minutes 

Steps

• Define the various tasks of the 
system administration group
• Define your team
• Prioritize the tasks and allocate 
the resources
• Generate a shift plan for one of 
the team members that only list 
his or her tasks
• Generate an overview plan that 
shows all assignments



End of TaskJuggler Workshop (Part I)



TaskJuggler Workshop (Part II)
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Workshop Agenda (Part II)

• Working with Include Files
• Creating Custom Templates
• Advanced Reports
• Collaborating with other Projects and Project 

Managers
• Tracking the Project Status
• Documenting the Project Evolvement
• User defined Attributes
• Playing with multiple Scenarios
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Working with Macros

• Macros are somewhat flexible text fragments that can 
be inserted multiple times once they have been 
defined.

• Macro names must have at least one uppercase letter
• Definition of a Macro

macro allocateGrp [ allocate john, wilma ]

• Using a defined Macro
task foo “Foo Task” {

  effort 20d

  ${allocateGrp}

}
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Working with Macros (Cntd.)

• Parts of macros can be replaced during insertion time 
by using parameters.

• Definition of a Macro with parameters
macro defTask [ task ${1} “${1} Task” ]

• Calling a Macro with parameters
${defTask “foo”}

${defTask “bar”}

• Result of the expanded Macros
task foo “foo Task”

task bar “bar Task”
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Creating Custom Templates

• TaskJuggler comes with several custom templates but 
the you can add your own templates as well

• Custom templates need to be put into
${HOME}/.kde/share/apps/taskjuggler/templates/en_US

• The project start and end date can be automatically 
set to the current date (and current date + 180 days) 
when using @@projectstart@@ and 
@@projectend@@ instead of the dates in the 
templates.
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Working with include Files

• To include another file into your project file, put an 
include statement into your project:
include “sometasks.tji”

• Project files must have a .tjp extension, include files 
must have a .tji extension.

• Tasks in the include file can be included as sub-tasks 
of some other task.
include “sometasks.tji” { taskprefix foo }

• Include statements may only be used in the project 
header or outside of all property definitions.

• supplement keyword can be used to add attributes 
to already defined properties
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Exercise No. 7

Task:
Take the release plan 
project and break it into 
several files.

Time: 15 minutes 

Steps

• Create an include file for the 
resource definitions divided into 
2 teams
• Add some sub tasks of one tasks 
into 2 additional include files
• Allocate some resources so that 
one team is allocated in each of 
the include files
• Learn how to navigate the project 
with the browsers
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Advanced Reports

• Good reports show exactly the amount of information 
you want to show. Nothing more and nothing less.

• TaskJuggler supports many filter mechanism to limit 
the reports to the right amount of data
• Show only the columns that matter

• hidetask, hideresource, hideaccount

• rolluptask, rollupresource, rollupaccount

• limit the report interval with start and end dates

• values are reported in the right format and unit:
– loadunit, timeformat, shorttimeformat, 
barlabels, showprojectids

• In tree-mode sorting parents are always included, no 
matter what the filters say. Use a different sorting 
mode to avoid this if undesired.
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Advanced Reports (Cntd.)

• The default scenario ID needed for some query 
functions is plan

• In tree-mode sorting parents are always included, no 
matter what the filters say. Use a different sorting 
mode to avoid this if undesired.
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Excluding details from reports

• Limiting the report period
taskreport “Task List” {

  period 2001-12-01 +2w

}

• Excluding tasks or resources
hidetask <LOGICAL EXPRESSION>

rolluptask <LOGICAL EXPRESSION>

hideresoruce <LOGICAL EXPRESSION>

rollupresource <LOGICAL EXPRESSION>
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Customizing Column Headers and 
Cells

• The default column title can be replaced
taskreport “Task List” {

  columns no, name, effort { title “Work” }

}

• In HTML reports links can be added to headers and 
table cells
htmltaskreport "LinkURL.html" {

  columns hierarchindex, name,

          monthly { subtitleurl "Monthly-Detail-
$${month}.html" }

}

htmltaskreport "LeafEfforts.html" {

  columns hierarchindex, name,

          effort { hidecelltext ~isLeaf() }

}
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Adding Information to Reports

• Adding a Headline
taskreport “Task List” {

  headline “The tasks of my project”

}

• Adding a Caption
htmlresourcereport “Resources.html” {

  caption “List of all the hard working men and 
women on the project.”

}

• Adding a copyright (must be done in the header)
project myPrj “My Project” “1.0” 2005-11-01 -

 2006-04-01 {

  copyright “2005 Big Business, Inc.”

}
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Advanced HTML Reports

HTML Reports can be customized by adding an inline 
stylesheet, and HTML fragments at the top and bottom 
of the report.

rawhead

  '<table align="center" border="2" cellpadding="10"

    style="background-color:#f3ebae; font-size:105%">

  <tr>

    <td><a href="Tasks-Overview.html">Tasks Overview</a></td>

    <td><a href="Staff-Overview.html">Staff Overview</a></td>

    <td><a href="Accounting.html">Accounting</a></td>

    <td><a href="Calendar.html">Calendar</a></td>

  </tr>

    </table>

  <br>'



© 2005, 2006, 2007 by Chris Schlaeger, Licensed under the GNU Free Document License 1.2

  

CSV (Colon Separated Values) Report

• CSV is a simple text-form exchange format to export 
data to office suites like OpenOffice.org

• CSV reports are available in 3 types
• csvtaskreport

• csvresourcereport

• csvaccountreport

• Right click on a CSV report in the report browser and 
select “Generate Report”

• Then the resulting report file can be loaded with 
OpenOffice.org. Use “comma” as a separator.

• Set the mime-type definition of text/x-csv to 
OpenOffice.org to automatically lauch OOo from the 
report browser
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Exercise No. 8

Task:
Generate several 
different reports for your 
project.

Time: 10 minutes

Steps

• Generate an HTML task report 
that only contains tasks allocated 
to team 1
• Generate a CSV report  with all 
tasks and efforts and import it 
into OpenOffice.org



Short Break
Please be ready to continue in 5 Minutes!
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Tracking the Project Status

• TaskJuggler is helping you a lot when tracking your 
project status. If no other information is provided, it 
assumes that all tasks have progressed as planned.

• Simple way to provide status information
task foo “Foo Task” {

  effort 2w allocate john

  complete 75

}

• Detailed way to provide status information
supplement resource john {

  booking 2003-06-08 2003-06-09 t1 { sloppy 2 }

  booking 2003-06-11 2003-06-12 t1 { sloppy 2 }

}
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Generating Export Files

• TaskJuggler can export a scheduled project in the 
same text format that the unscheduled project was 
provided in.

• The amount of information that is exported can be 
controlled by the properties attribute.

• E.g. export only the resource bookings for a certain 
week:
export "Week1Bookings.tji" {

  properties bookings

  start 2000-01-01

  end 2000-01-08

}
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Scheduling in Projection Mode

• The bookings up to the current date may vary from the 
original plan.

• TaskJuggler can then schedule a new plan based on 
the amount of work that has happened already.

• The “current” date is user configurable.

project prj "Project" "1.0" 2003-06-05 -

        2003-07-05 {

  now 2003-06-15

  scenario plan "Plan" {

    projection

  }

}
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Generating Status Reports

• Status reports are only available in HTML format
• Status reports include the following items

• Tasks that should have been finished already

• Work in progress

• Tasks that have been completed

• Upcoming new tasks

htmlstatusreport “StatusReport-Week45.html”
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Exercise No. 9

Task:
Generate a status report 
report for the project 4 
weeks after the start.

Time: 15 minutes 

Steps

• Export bookings for the first 4 
allocated weeks
• Remove or modify some 
bookings and include the export 
file in your project file
• Generate a status report for the 
week 4 weeks after the first work 
started
• Generate a new project plan 
based on the currently completed 
work
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Working with multiple Project Plans

Export reports can be standalone project files or 
includeable sub-projects depending on the filename 
extension used in the report definition.

export "SubProject.tji" {

  taskattributes all

  hideresource 0

}

export "FullProject.tjp" {

  taskattributes all

  hideresource 1

}
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Different Export Files

• *.tjp Export files have a project header
• *.tji Export files have no project header
• The other content can be controlled by properties 

and the usual filter mechanisms
• The following properties are supported:

all, bookings, shifts, tasks, resources
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Dealing with multiple Project IDs

• All tasks of sub-projects keep their original project ID
• To include a sub-project, the project ID needs to be 

declared first

projectids myproject1, myproject2

• Export reports (*.tji) already contain this declaration
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Exporting a sub-Project

• Parts of a project can be turned into a standalone 
Project file.

• Use taskroot to identify the sub-tree you want to 
export. All sub tasks of the root task will be exported.
export “SubProject.tjp” {

  taskroot myproject.jimsWork

  taskattributes all

  hideresource 0

}

• Use hidetask to export only certain sub-tasks of the 
root task
hidetask ~isChildOf(myproject.jimsWork.foo)
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Exercise No. 10

Task:
Combine 2 independent 
project into a summary 
project.

Time: 15 minutes 

Steps

• Turn the 2 task files into 
independent projects
• Export the scheduled projects
• Include them into a summary 
project
• Generate a summary report



Short Break
Please be ready to continue in 5 Minutes!
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Documenting the Project Evolvement

• Adding notes to tasks
task foo “Foo Task” {

  note “This might be difficult.”

}

• Adding status notes to tasks
task foo “Foo Task” {

  statusnote “We have unexpected problems.”

}

• Keeping a Journal of events
task foo “Foo Task” {

  journalentry 2005-10-20 “We ran into problems.”

  journalentry 2005-10-21 “Informed customer.”

  journalentry 2005-10-25 “Problem solved.”

}
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User Defined Attributes

• The attribute set of tasks, resources and accounts can 
be extended by the user.

• There are two types of attributes available
Strings and URLs

• User defined attributes do not impact the scheduling. 
They are for documentation and reporting purposes 
only.

• They can be used in all reports like the build-in 
attributes.

• User Defined attribute IDs must start with a capital 
letter
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User Define Attributes (Cntd.)

project ca "Custom Attributes" "1.0" 2003-05-28 - 

        2003-06-28 {

  extend task {

    reference MyLink "My Link"

    text MyText "My Text"

  }

}

task t "Task" {

  start 2003-05-28

  MyLink "http://www.taskjuggler.org" { label "TJ Web" 
}

  MyText "TaskJuggler is great!"

}
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Playing with multiple Scenarios

project prj "Example" "1.0" 2005-05-29 - 2005-07-01 {

  scenario plan "Planned Scenario" {

    scenario actual "Actual Scenario"

    scenario test "Test Scenario" {

      disabled

    }

  }

}

task t "Task" {

  start 2005-05-29

  actual:start 2005-06-03

  test:start 2005-06-07

}
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Exercise No. 11

Task:
Add another slightly 
different scenario to the 
project plan from 
Exercise 7.

Time: 15 minutes

Steps

• Create an additional scenario 
definition
• Look in the manual for scenario 
specific values
• Add a few changes for the 2nd 
scenario
• Add an email attribute to your 
resources
• Generate an HTML task report 
that compares both scenarios
• Generate a list with all resources 
including their email address



The End
Thanks for attending!

A copy of the slides is available from the 
TaskJuggler web site at http://www.taskjuggler.org/

http://www.taskjuggler.org/
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